资源类型

期刊论文 282

会议视频 4

年份

2024 1

2023 16

2022 16

2021 20

2020 17

2019 20

2018 11

2017 15

2016 7

2015 19

2014 7

2013 13

2012 18

2011 11

2010 20

2009 17

2008 13

2007 14

2006 5

2005 7

展开 ︾

关键词

模型试验 6

DX桩 4

2023全球十大工程成就 2

承载力 2

有限元分析 2

混凝土 2

1860 MPa等级 1

4250 m 1

ANSYS 1

BP神经网络 1

CFRP索斜拉桥 1

GA-BP网络 1

ISO 9705 1

ISO标准火灾实验系统 1

LED灯具;加速老化测试;中位寿命;滑动平均误差 1

WAPI 1

三向受力状态 1

三峡升船机 1

三峡工程 1

展开 ︾

检索范围:

排序: 展示方式:

Physical and mechanical properties of municipal solid waste incineration residues with cement and coal fly ash using X-ray Computed Tomography scanners

Toshifumi MUKUNOKI, Ta Thi HOAI, Daisuke FUKUSHIMA, Teppei KOMIYA, Takayuki SHIMAOKA

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 640-652 doi: 10.1007/s11709-018-0502-6

摘要: A significant volume of Municipal Solid Waste incineration bottom ash and fly ash (i.e., incineration residues) are commonly disposed as landfill. Meanwhile, reclamation of landfill sites to create a new land space after their closure becomes an important goal in the current fewer and fewer land availability scenario in many narrow countries. The objective of this study is to reclaim incineration residue materials in the landfill site by using cement and coal fly ash as stabilizers aiming at performing quality check as new developed materials before future construction. Indeed, physical and mechanical properties of these new materials should be initially examined at the micro scale, which is the primary fundamental for construction at larger scale. This research examines quantitative influences of using the combination of cement and coal fly ash at different ratio on the internal structure and ability of strength enhancement of incineration residues when suffering from loading. Couple of industrial and micro-focus X-ray computed tomography (CT) scanners combined with an image analysis technique were utilized to characterize and visualize the behavior and internal structure of the incineration residues-cement-coal fly ash mixture under the series of unconfined compression test and curing period effect. Nine types of cement solidified incineration residues in term of different curing period (i.e., 7, 14, 28 days) and coal fly ash addition content (i.e., 0%, 9%, 18%) were scanned before and after unconfined compression tests. It was shown that incineration residues solidified by cement and coal fly ash showed an increase in compression strength and deformation modulus with curing time and coal fly ash content. Three-dimension computed tomography images observation and analysis confirmed that solidified incineration residues including incineration bottom and fly ash as well as cement and coal fly ash have the deliquescent materials. Then, it was studied that stabilized parts play a more important role than spatial void distribution in increment or reduction of compression strength.

关键词: mechanical property     municipal solid waste incineration residues     coal fly ash     unconfined compression test     image analysis     X-Ray Computed Tomography scanners    

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0968-8

摘要: Fiber-reinforced polymers (FRPs) have received considerable research attention because of their high strength, corrosion resistance, and low weight. However, owing to the lack of ductility in this material and the quasi-brittle behavior of concrete, FRP-reinforced concrete (FRP-RC) beams, even with flexural failure, do not fail in a ductile manner. Because the limited deformation capacity of FRP-RC beams depends on the ductility of their compression zones, the present study proposes using a precast confined concrete block (PCCB) in the compression zone to improve the ductility of the beams. A control beam and four beams with different PCCBs were cast and tested under four-point bending conditions. The control beam failed due to shear, and the PCCBs exhibited different confinements and perforations. The goal was to find an appropriate PCCB for use in the compression zone of the beams, which not only improved the ductility but also changed the failure mode of the beams from shear to flexural. Among the employed blocks, a ductile PCCB with low equivalent compressive strength increased the ductility ratio of the beam to twice that of the control beam. The beam failed in pure flexure with considerable deformation capacity and without significant stiffness reduction.

关键词: ductility     four-point bending test     glass fiber-reinforced polymer     precast confined concrete block    

Experimental study on slurry-induced fracturing during shield tunneling

Teng WANG, Dajun YUAN, Dalong JIN, Xinggao LI

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 333-345 doi: 10.1007/s11709-021-0718-8

摘要: Facial support in slurry shield tunneling is provided by slurry pressure to balance the external earth and water pressure. Hydraulic fracturing may occur and cause a significant decrease in the support pressure if the slurry pressure exceeds the threshold of the soil or rock material, resulting in a serious face collapse accident. Preventing the occurrence of hydraulic fracturing in a slurry shield requires investigating the effects of related influencing factors on the hydraulic fracturing pressure and fracture pattern. In this study, a hydraulic fracturing apparatus was developed to test the slurry-induced fracturing of cohesive soil. The effects of different sample parameters and loading conditions, including types of holes, unconfined compressive strength, slurry viscosity, and axial and circumferential loads, on the fracturing pressure and fracture dip were examined. The results indicate that the fracture dip is mainly affected by the deviator stress. The fracturing pressure increases linearly with the increase in the circumferential pressure, but it is almost independent of the axial pressure. The unconfined compressive strength of soil can reflect its ability to resist fracturing failure. The fracturing pressure increases with an increase in the unconfined compressive strength as well as the slurry viscosity. Based on the test results, an empirical approach was proposed to estimate the fracturing pressure of the soil.

关键词: slurry shield tunneling     hydraulic fracturing test     fracturing pressure     fracture dip     unconfined compressive strength     slurry viscosity    

Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate

Ali Reza GHANIZADEH, Morteza RAHROVAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 787-799 doi: 10.1007/s11709-019-0516-8

摘要: The recycled layer in full-depth reclamation (FDR) method is a mixture of coarse aggregates and reclaimed asphalt pavement (RAP) which is stabilized by a stabilizer agent. For design and quality control of the final product in FDR method, the unconfined compressive strength of stabilized material should be known. This paper aims to develop a mathematical model for predicting the unconfined compressive strength (UCS) of soil-RAP blend stabilized with Portland cement based on multivariate adaptive regression spline (MARS). To this end, two different aggregate materials were mixed with different percentages of RAP and then stabilized by different percentages of Portland cement. For training and testing of MARS model, total of 64 experimental UCS data were employed. Predictors or independent variables in the developed model are percentage of RAP, percentage of cement, optimum moisture content, percent passing of #200 sieve, and curing time. The results demonstrate that MARS has a great ability for prediction of the UCS in case of soil-RAP blend stabilized with Portland cement ( is more than 0.97). Sensitivity analysis of the proposed model showed that the cement, optimum moisture content, and percent passing of #200 sieve are the most influential parameters on the UCS of FDR layer.

关键词: full-depth reclamation     soil-reclaimed asphalt pavement blend     Portland cement     unconfined compressive strength     multivariate adaptive regression spline    

Effects of natural zeolite and sulfate ions on the mechanical properties and microstructure of plastic concrete

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 86-98 doi: 10.1007/s11709-021-0793-x

摘要: One of the strategic materials used in earth-fill embankment dams and in modifying and preventing groundwater flow is plastic concrete (PlC). PlC is comprised of aggregates, water, cement, and bentonite. Natural zeolite (NZ) is a relatively abundant mineral resource and in this research, the microstructure, unconfined strength, triaxial behavior, and permeability of PlC made with 0%, 10%, 15%, 20%, and 25% replacement of cement by NZ were studied. Specimens of PIC-NZ were subjected to confined conditions and three different confining pressures of 200, 350, and 500 kPa were used to investigate their mechanical behavior and permeability. To study the effect of sulfate ions on the properties of PlC-NZ specimens, the specimens were cured in one of two different environments: normal condition and in the presence of sulfate ions. Results showed that increasing the zeolite content decreases the unconfined strength, elastic modulus, and peak strength of PlC-NZ specimens at the early ages of curing. However, at the later ages, increasing the zeolite content increases unconfined strength as well as the peak strength and elastic modulus. Specimens cured in the presence of sulfate ions indicated lower permeability, higher unconfined strength, elastic modulus, and peak strength due to having lower porosity.

关键词: plastic concrete     sulfate resistance     natural zeolite     triaxial compression test     SEM     permeability    

Experimental study on the compressive performance of new sandwich masonry walls

Jianzhuang XIAO, Jie PU, Yongzhong HU

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 154-163 doi: 10.1007/s11709-013-0203-0

摘要: Sandwich masonry wall, namely, multi-leaf masonry wall, is widely applied as energy-saving wall since the interlayer between the two outer leaves can act as insulation layer. New types of sandwich walls keep appearing in research and application, and due to their unique connection patterns, experimental studies should be performed to investigate the mechanical behavior, especially the compressive performance. 3 new types of sandwich masonry wall were investigated in this paper, and 3 different technical measures were considered to guarantee the cooperation between the two leaves of the walls. Based on the compression tests of 13 specimens, except for some damage patterns similar with the conventional masonry walls, several new failure patterns are found due to unique connection construction details. Comparisons were made between the tested compression capacity and the theoretical one which was calculated according to the Chinese Code for Design of Masonry Structures. The results indicate that the contributions of the 3 technical measures are different. The modification coefficient ( ) was suggested to evaluate the contribution of the technical measures on the compression capacity, and then a formula was proposed to evaluate the design compression capacity of the new sandwich masonry walls.

关键词: sandwich wall     insulation wall     connection     compressive performance     compression test    

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1415-1425 doi: 10.1007/s11709-021-0786-9

摘要: To study the behavior of coral aggregate concrete (CAC) column under axial and eccentric compression, the compression behavior of CAC column with different types of steel and initial eccentricity (ei) were tested, and the deformation behavior and ultimate bearing capacity (Nu) were studied. The results showed that as the ei increases, the Nu of CAC column decreases nonlinearly. Besides, the steel corrosion in CAC column is severe, which reduces the steel section and steel strength, and decreases the Nu of CAC column. The durability of CAC structures can be improved by using new organic coated steel. Considering the influence of steel corrosion and interfacial bond deterioration, the calculation models of Nu under axial and eccentric compression were presented.

关键词: coral aggregate concrete column     axial compression     eccentric compression     steel corrosion     calculation model    

Behavior of dam concrete under biaxial compression-tension and triaxial compression-compression-tension

WANG Huailiang, SONG Yupu

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 323-328 doi: 10.1007/s11709-008-0043-5

摘要: In order to meet the requirement for nonlinear analysis and design of mass concrete structures, the deformation behavior and strength of three-graded concrete specimens 250 mm × 250 mm × 400 mm with a maximum aggregate size of 80 mm and the corresponding wet-screened concrete specimens 150 mm × 150 mm × 300 mm with a maximum aggregate size of 40 mm were studied experimentally. Specimens subjected to biaxial compression-tension (C-T) and triaxial compression-compression-tension (C-C-T) stress states. Test data indicate that both the deformation and strength of the mass concrete specimens are lower than those of the corresponding wet-screened concrete small specimens, but the initial tangent modulus of the stress-strain curve of the former is greater than that of the latter. Test results show that the wet-screened effect and size effect of the specimens under complex stress states are obvious such that these should be considered in the design of mass concrete structures. In addition, respective failure criteria for mass concrete in principal stress space and octahedron stress space are proposed.

关键词: requirement     wet-screened concrete     compression-tension     maximum aggregate     principal    

Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support

Alireza TABARSA, Nima LATIFI, Abdolreza OSOULI, Younes BAGHERI

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 520-536 doi: 10.1007/s11709-021-0689-9

摘要: This study aims to improve the unconfined compressive strength of soils using additives as well as by predicting the strength behavior of stabilized soils using two artificial-intelligence-based models. The soils used in this study are stabilized using various combinations of cement, lime, and rice husk ash. To predict the results of unconfined compressive strength tests conducted on soils, a comprehensive laboratory dataset comprising 137 soil specimens treated with different combinations of cement, lime, and rice husk ash is used. Two artificial-intelligence-based models including artificial neural networks and support vector machines are used comparatively to predict the strength characteristics of soils treated with cement, lime, and rice husk ash under different conditions. The suggested models predicted the unconfined compressive strength of soils accurately and can be introduced as reliable predictive models in geotechnical engineering. This study demonstrates the better performance of support vector machines in predicting the strength of the investigated soils compared with artificial neural networks. The type of kernel function used in support vector machine models contributed positively to the performance of the proposed models. Moreover, based on sensitivity analysis results, it is discovered that cement and lime contents impose more prominent effects on the unconfined compressive strength values of the investigated soils compared with the other parameters.

关键词: unconfined compressive strength     artificial neural network     support vector machine     predictive models     regression    

Investigation of the interior RC beam-column joints under monotonic antisymmetrical load

Fei GAO, Zhiqiang TANG, Biao HU, Junbo CHEN, Hongping ZHU, Jian MA

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1474-1494 doi: 10.1007/s11709-019-0572-0

摘要: The paper presents numerical findings of reinforced concrete interior beam-column joints under monotonic antisymmetrical load. The finite element models considered compression and tension damage were calibrated by test results in terms of the load-displacement, failure modes, and strains of longitudinal steel. The emphasis was put on studying the effects of hoop reinforcement ratio in joint core and the axial compression ratio on the responses of the joints. The results show that, in addition to the truss and strut-and-tie mechanisms, the confinement mechanism also existed in the joint core. A certain amount of stirrup is not only able to enhance the confinement in joint core, undertake a part of shear force and thus to increase the shear capacity, prevent the outward buckling of steel bars in column, improve the stress distribution in joint core, delay cracking and restrain the propagation of cracks, but also to increase the yield load, decrease the yield displacement of beam and improve the joint ductility. However, excessive horizontal stirrups contribute little to the joint performance. In a certain range, larger axial compression ratio is beneficial for the joint mechanical behavior, while it is negative when axial compression ratio is too large.

关键词: RC beam-column joint     reinforcement ratio in joint core     axial compression ratio     finite element     test    

Effects of compression ratio on the combustion characteristics of a homogeneous charge compression ignition

SONG Ruizhi, ZHOU Longbao, LIU Shenghua, LI Wei, HU Tiegang

《能源前沿(英文)》 2007年 第1卷 第4期   页码 463-467 doi: 10.1007/s11708-007-0068-0

摘要: The effects of homogeneous charge compression ignition (HCCI) engine compression ratio on its combustion characteristics were studied experimentally on a modified TY1100 single cylinder engine fueled with dimethyl ether. The resul

关键词: homogeneous     cylinder     combustion     compression     dimethyl    

Numerical study of ignition mechanism of n-heptane direct injection compression-ignition engine

Xiaoping GUO, Zhanjie WANG,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 432-439 doi: 10.1007/s11708-009-0050-9

摘要: A detailed chemical dynamical mechanism of oxidation of n-heptane was implemented into kiva-3 code to study the ignition mechanism of a high-temperature, high-pressure, three-dimensional-space, transient turbulent, non-homogeneous, mono-component fuel in the engine. By testing the quantity of the heat released by the chemical reaction within the cylinder cell, the elementary reaction showing an obvious increase in the cell temperature was defined as ignition reaction and the corresponding cell as ignition position. The main pathway of the ignition reaction was studied by using the reverse deducing method. The result shows that the ignition in the engine can be divided into low-temperature ignition and high-temperature ignition, both of which follow the same rule in releasing heat, called the impulse heat releasing feature. Low-temperature ignition reaction, whose ignition reaction is c5h9o1-4=ch3cho+c3h5-a, follows the oxidation mechanism, while high-temperature ignition reaction, whose ignition reaction is c2h3o1-2=ch3co, follows the decomposition mechanism. No matter which ignition it is in, the chemical reaction that restrains the ignition reaction from lasting is the deoxidization reaction of alkylperoxy radicals.

关键词: compression-ignition engine     ignition mechanism     elementary reaction     n-heptane    

Three-dimensional numerical simulation for plastic injection-compression molding

Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 74-84 doi: 10.1007/s11465-018-0490-1

摘要:

Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian-Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

关键词: injection-compression molding     simulation     injection molding     melt flow     cavity pressure    

Improvement of engine performance with high compression ratio based on knock suppression using Miller

Haiqiao WEI, Jie YU, Lei ZHOU

《能源前沿(英文)》 2019年 第13卷 第4期   页码 691-706 doi: 10.1007/s11708-019-0621-3

摘要: In theory, high compression ratio has the potential to improve the thermal efficiency and promote the power output of the SI engine. However, the application of high compression ratio is substantially limited by the knock in practical working process. The objective of this work is to comprehensively investigate the application of high compression ratio on a gasoline engine based on the Miller cycle with boost pressure and split injection. In this work, the specific optimum strategies for CR10 and CR12 were experimentally investigated respectively on a single cylinder DISI engine. It was found that a high level of Miller cycle with a higher boost pressure could be used in CR12 to achieve an effective compression ratio similar to CR10, which could eliminate the knock limits at a high compression ratio and high load. To verify the advantages of the high compression ratio, the fuel economy and power performance of CR10 and CR12 were compared at full and partial loads. The result revealed that, compared with CR10, a similar power performance and a reduced fuel consumption of CR12 at full load could be achieved by using the strong Miller cycle and split injection. At partial load, the conditions of CR12 had very superior fuel economy and power performance compared to those of CR10.

关键词: high compression ratio     knock     Miller cycle     split injection     engine performance    

Efficient controller area network data compression for automobile applications

Yu-jing WU,Jin-Gyun CHUNG

《信息与电子工程前沿(英文)》 2015年 第16卷 第1期   页码 70-78 doi: 10.1631/FITEE.1400136

摘要: Controller area networks (CANs) have been designed for multiplexing communication between electronic control units (ECUs) in vehicles and many high-level industrial control applications. When a CAN bus is overloaded by a large number of ECUs connected to it, both the waiting time and the error probability of the data transmission are increased. Thus, it is desirable to reduce the CAN frame length, since the duration of data transmission is proportional to the frame length. In this paper, we present a CAN message compression method to reduce the CAN frame length. Experimental results indicate that CAN transmission data can be compressed by up to 81.06% with the proposed method. By using an embedded test board, we show that 64-bit engine management system (EMS) CAN data compression can be performed within 0.16 ms; consequently, the proposed algorithm can be successfully used in automobile applications.

关键词: Controller area network (CAN)     Electronic control units (ECUs)     Data compression     Signal rearrangement    

标题 作者 时间 类型 操作

Physical and mechanical properties of municipal solid waste incineration residues with cement and coal fly ash using X-ray Computed Tomography scanners

Toshifumi MUKUNOKI, Ta Thi HOAI, Daisuke FUKUSHIMA, Teppei KOMIYA, Takayuki SHIMAOKA

期刊论文

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

期刊论文

Experimental study on slurry-induced fracturing during shield tunneling

Teng WANG, Dajun YUAN, Dalong JIN, Xinggao LI

期刊论文

Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate

Ali Reza GHANIZADEH, Morteza RAHROVAN

期刊论文

Effects of natural zeolite and sulfate ions on the mechanical properties and microstructure of plastic concrete

期刊论文

Experimental study on the compressive performance of new sandwich masonry walls

Jianzhuang XIAO, Jie PU, Yongzhong HU

期刊论文

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

期刊论文

Behavior of dam concrete under biaxial compression-tension and triaxial compression-compression-tension

WANG Huailiang, SONG Yupu

期刊论文

Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support

Alireza TABARSA, Nima LATIFI, Abdolreza OSOULI, Younes BAGHERI

期刊论文

Investigation of the interior RC beam-column joints under monotonic antisymmetrical load

Fei GAO, Zhiqiang TANG, Biao HU, Junbo CHEN, Hongping ZHU, Jian MA

期刊论文

Effects of compression ratio on the combustion characteristics of a homogeneous charge compression ignition

SONG Ruizhi, ZHOU Longbao, LIU Shenghua, LI Wei, HU Tiegang

期刊论文

Numerical study of ignition mechanism of n-heptane direct injection compression-ignition engine

Xiaoping GUO, Zhanjie WANG,

期刊论文

Three-dimensional numerical simulation for plastic injection-compression molding

Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI

期刊论文

Improvement of engine performance with high compression ratio based on knock suppression using Miller

Haiqiao WEI, Jie YU, Lei ZHOU

期刊论文

Efficient controller area network data compression for automobile applications

Yu-jing WU,Jin-Gyun CHUNG

期刊论文